
CENTIPEDE-PCI CNC Interface Board

Mach3 Version

Firmware V2.0.0

KSI Labs, LLC

2011

COPYRIGHT

© 2010 KSI Labs, LLC. All rights reserved.

The trademarks mentioned in this manual are legally registered to
their respective owners.

Disclaimer

Information in this manual is protected by copyright laws and is the property of
KSI Labs, LLC. Changes to speci�cation and features in this manual may be
made byKSI Labs, LLC at any time without prior notice. For product-related
information and latest versions check our web site:

http://www.ksilabs.com

1

Contents

1 HARDWARE 3
1.1 Connectors . 4

1.1.1 JTAG . 4
1.1.2 External Connector 4
1.1.3 Extension Connector 6

2 FIRMWARE 8
2.1 PCI Device Registers . 9
2.2 Registers Description . 11

2.2.1 DATA_OUT, O�set 0x00 11
2.2.2 DATA_IN, O�set 0x04 12
2.2.3 DAC, O�set 0x08 14
2.2.4 ADC, O�set 0x0c 14
2.2.5 IRQ_RAW, O�set 0x10 15
2.2.6 IRQ_MASK, O�set 0x14 16
2.2.7 IRQ_STAT, O�set 0x18 17
2.2.8 MACH_IDX_[XYZABC], O�sets 0x1c, 0x20,

0x24, 0x28, 0x2c, 0x30 17
2.2.9 MACH_CONFIG, O�set 0x34 18
2.2.10 MACH_CONFIG2, O�set 0x38 19
2.2.11 MACH_CTL, O�set 0x3c 20
2.2.12 MACH_STAT, O�set 0x40 22
2.2.13 MACH_FIFO, O�set 0x44 23
2.2.14 MACH_ENC, O�set 0x48 24
2.2.15 MACH_SPCNT, O�set 0x4c 24
2.2.16 MACH_SPCTL, O�set 0x50 25

3 Appendix A - Hardware di�erences between rev.1.0 and rev.1.1 26

2

Chapter 1

HARDWARE

CENTIPEDE-PCI is a PCI-2.2 compatible interface card for CNC control appli-
cations. It may be used for other purposes as well but it was designed to control
a CNC machine when used with optional breakout board, CENTIPEDE-BRK.
It is universal PCI Add-In card i.e. it will work in both 3.3V and 5V PCI/PCI-X
slot.

CENTIPEDE-PCI (simply PCI from now on) board is designed in the way
that allows for maximum �exibility and extensibility. Entire functionality is
implemented in in�nitely reprogrammable Altera MaxII© CPLD so all board's
hardware is actually an HDL code. That code can be changed and programmed
into the CPLD thus allowing for easy bug �xes, new functionality addition, and
ultimately for making it into something totally di�ererent. All CPLD source
code (in VHDL) is available for free from KSI Labs, LLC web site. New releases,
extensions, user-contibuted add-ons etc. will be also available from our web site
as well as precompiled CPLD images (*.pof �les) that can be directly written
into the CPLD.

All external connections are made through a single 100-pin connector. There
are 32 galvanically isolated dedicated inputs, 32 Open Drain dedicated outputs,
2 LVDS inputs and 10 LVDS outputs (all galvanically isolated.) LVDS I/O is
supposed to implement SPI-like interfaces to external devices with up to 1MHz
clock rate. Some of them used for communication with DAC/ADC peripherals
on the breakout board (BRK from now on,) some are free for future use with
add-on extension boards.

ALL external I/O is designed as galvanically isolated; there is no provision
for a direct galvanic connection to the PCI board. Open Drain outputs are
supposed to drive optocouplers so no ground connection is provided. There is
+5V power from the external connector and external devices' optocouplers are
connected between that +5V power and OD outputs. In the similar fashion
all input optocouplers' LED anodes are connected together and routed to the
external connector for connection to external +5V power and their cathodes are
supposed to be connected to that external 5V ground to pass a signal to the
PC.

3

LVDS I/O is also galvanically isolated with ISO72xx digital isolators. Those
have 2 separate power supplies; the PCI board side is powered from the PC and
connected to CPLD pins while the external side is powered from external 5V
power. There is no galvanic connection between those two sides.

8 of 32 digital inputs use high speed FOD053L optocouplers with 1 μS prop-
agation time for time-critical signals. Remaining 24 use regular MOCD207M
devices with 3 μS propagation time.

1.1 Connectors

1.1.1 JTAG

Connector J2 in the center of the board is a standard Altera JTAG connector
for programming the CPLD. It is fully compatible with standard Altera pro-
gramming tools (ByteBlasterII, USB-Blaster etc.) This connector is keyed to
prevent from inserting the programming tool plug a wrong way. Other than
that there is nothing more to say about it. CPLD programming is fully docu-
mented in QuartusII Web Edition software available for free from Altera web
site. There is a brief programming procedure description in �Setting up CEN-

TIPEDE board set for Mach3 � document. Here is the schematics fragment with
JTAG connector:

10
8
6
4
2 1

3
5
7
9

+3.3V

J2 JTAG

R
2

10K

R
1

10K

R3 10K

TDI

TMS

TCK
TDO

Figure 1.1: JTAG Connector

1.1.2 External Connector

External connector is high quality 100-pin N102A0-52E2PC connector from 3M.
All I/O signals come from this connector. Special cable is used for connecting
PCI to BRK board. It is 1:1 cable and it is made to order when ordering
PCI/BRK boards from KSI Labs, LLC. Cable length can be up to 20 ft.
according to the customer's speci�cation.

Here is the external connector pinout and signals description:

4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

100
99
98
97
96
95
94
93
92
91

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

50
49
48
47
46
45
44
43
42
41

+5V
J3

IGND

V+IN0..7
IN0
IN1
IN2
IN3
IN4
IN5
IN6
IN7

V+IN8..15
IN8
IN9
IN10
IN11
IN12
IN13
IN14
IN15

V+IN16..23
IN16
IN17
IN18
IN19
IN20
IN21
IN22
IN23

V+IN24..31
IN24
IN25
IN26
IN27
IN28
IN29
IN30
IN31

IVCC
MISO1+
MISO1−
MOSI1+
MOSI1−
SPCK1+
SPCK1−
NSS11+
NSS11−
NSS12+
NSS12−
NSS13+
NSS13−

IGND

OUT0
OUT1
OUT2
OUT3
OUT4
OUT5
OUT6
OUT7

OUT8
OUT9
OUT10
OUT11
OUT12
OUT13
OUT14
OUT15

OUT16
OUT17
OUT18
OUT19
OUT20
OUT21
OUT22
OUT23

OUT24
OUT25
OUT26
OUT27
OUT28
OUT29
OUT30
OUT31
IVCC

MISO2+
MISO2−
MOSI2+
MOSI2−
SPCK2+
SPCK2−
NSS21+
NSS21−
NSS22+
NSS22−
NSS23+
NSS23−

Figure 1.2: External Connector

IN0..31 Input optocouplers cathodes. Connect them to external power nega-
tive (or ground) rail to set input to '1' level. IN0 is bit 0 of DATA_IN
register.

V+IN0..7-V+IN24..32 Input optocouplers anodes in groups of 8. They
should be connected to the positive rail of an external power supply. There
are series 330 Ω resistors installed for each optocoupler so there is no need
for additional resistors if 5V external power is used. Those are usually
powered from BRK board 5V power supply. 4 separate pins are used to
spread the load between 4 wires.

OUT0..31 Open Drain outputs for driving external optocouplers. There isNO
common ground connection on the external connector from PCI board

5

version 1.1 and up. These outputs MUST drive external optocouplers
only to provide galvanical isolation. They should be connected to external
optocouplers LED cathode. Anodes of those LEDs should be connected to
+5V outputs (pins 51,60,69,78.) Series resistors are required for external
optocouplers. They should be designed for 5V operation. OUT0 is bit 0
of DATA_OUT register.

+5V Power for external optocouplers on OUT0..31 lines. This is taken directly
from PCI bus and should NOT be used for anything else (there is no
ground connection anyway.) There is 4 pins for this power to spread the
load between 4 wires. OUT0..31 OD outputs make ground connection for
this power rail when corresponding DATA_OUT register bits set to '1.'

MISO1+/- SPI1 data input di�erential pair. Not accessible directly from
application software.

MOSI1+/- SPI1 data output di�erential pair. Not accessible directly from
application software.

SPCK1+/- SPI1 clock di�erential pair. Not accessible directly from applica-
tion software.

NSS1[1..3]+/- SPI1 chip select di�erential pairs. Not accessible directly from
application software.

MISO2+/- SPI2 data input di�erential pair. Not accessible directly from
application software.

MOSI2+/- SPI2 data output di�erential pair. Not accessible directly from
application software.

SPCK2+/- SPI2 clock di�erential pair. Not accessible directly from applica-
tion software.

NSS2[1..3]+/- SPI2 chip select di�erential pairs. Not accessible directly from
application software.

IVCC External +5V power for machine side SPI interface. Usually connected
to BRK board 5V power supply.

IGND External 5V power supply ground for machine side SPI interface. Usu-
ally connected to BRK board ground.

1.1.3 Extension Connector

Extension connector is used for connecting add-on boards. It is NOT isolated
from PC so add-on boards implementing external interface to a machine must
provide their own galvanic isolation.

There is no particular add-on interface implemented for this connector as
of right now (�rmware v.2.0.0) but it is going to change in near future when

6

add-on boards are out. There is at least one such board in early design stage as
of v.2.0.0 �rmware time. This interface is NOT software accessible right now
and should have some VHDL code added to use it.

Here is the connector pinout and signals description:

+3.3V

30
28
26

4
2 1

3

25
27
29

24
22 21

23

20
18 17

19

16
14 13

15

12
10 9

11

8
6 5

7

34
32 31

33

38
36 35

37

42
40 39

41

46
44 43

45

50
48 47

49
+5V

EX40
EX38
EX36
EX34
EX32
EX30
EX28
EX26
EX24
EX22
EX20
EX18
EX16
EX14
EX12
EX10
EX8
EX6
EX4
EX2
EX0

EX41
EX39
EX37
EX35
EX33
EX31
EX29
EX27
EX25
EX23
EX21
EX19
EX17
EX15
EX13
EX11
EX9
EX7
EX5
EX3
EX1

J1+5V

+3.3V

Figure 1.3: Extension Connector

EX0..41 CPLD signals. EX0..41 lines are connected to CPLD pins so they can
be used for any purpose with custom VHDL additions.

Power Power rails are self-explanatory. They are supposed to power add-on
boards. +5V, +3.3V, and ground all come directly from PCI bus.

7

Chapter 2

FIRMWARE

CENTIPEDE-PCI board is a set of di�erent bu�ers/optocouplers/isolators and
one big CPLD. The entire functionality is implemented in the CPLD; all other
components are just simple interface components not implementing any logical
functions. That means that functionality may by radically changed by pro-
gramming CPLD with di�erent �rmware. Such design allows for easy hardware
bug�xes, almost unlimited �exibility, new functionality addition by simply re-
programming the CPLD etc.

It is necessary to understand that CPLD code implements HARDWARE
unlike some code for an embedded microcontroller that implements FIRMWARE.
The principal di�erence is that CPLD code is actually a table of interconnects
between di�erent basic hardware blocks that CPLD is made of. In other words
it is a bunch of wires and instructions where each wire is connected. Micro-
controller �rmware, on the other hand, is a PROGRAM i.e a set of instruc-
tions that microcomtroller fetches from memory and executes one-by-one. That
means that �rmware is always slower because every action is usually a sequence
of instructions. Another �rmware disadvantage is that MCU (MicroController
Unit) can only execute a single instruction at a time (actually there are MCUs
that are able of executing several instructions at a single step but that is not
a regular case and there are other limitations) so it can not act fast enough on
several di�erent tasks, it can get into an in�nite loop in one execution branch
and all other tasks will get suspended inde�nitely and there are other issues
with such approach. In CPLD, on the other hand we can implement several
di�erent units that are working in parallel totally independent of each other.

There is another fundamental di�erence between CPLD and MCU�there is
no program running in CPLD. The interconnection table is loaded from inter-
nal FLASH-like memory only once (usually on powerup) and then it is pure
hardware operation. It is not bootup like it is in MCU where the initial pro-
gram is loaded and then that program executes for the entire time the MCU is
operating; it is a one-time CONFIGURATION that only executes once.

That does not mean that CPLD can not execute some action sequences but
those sequences are purely hardware ones. Machine gun also performs some

8

sequence of actions when trigger is pulled but there is no software program in
it. MCU counts pulses by incrementing some variable while CPLD implements
it as a string of triggers changing their states.

Yet another di�erence is that unlike MCU CPLD does not have its pin
functions preassigned to particular pin (except a few such as power/ground pins
or JTAG pins for initial programming.) Almost any signal can be connected to
almost any CPLD pin upon initial con�guration that makes PCB design much
easier because one can reassign signals to di�erent pins if it makes PCB layout
easier. There are some limitations of course but they are not all that strict.

There are di�erent ways to make that CPLD (Complex Programmable Logic
Device) con�guration table. One can use a pure schematic approach by drawing
schematics with special CAD software and then it is translated to the particular
CPLD device con�guration image by special �compiler.� This is the most precise
way but it is cumbersome and not actually suitable for bigger and more com-
plex designs. Another way is using some kind of HDL (Hardware Description
Language) that describes how the hardware is supposed to operate. Then such
a description is processed by a set of CAD tools that synthesize a schematic im-
plementation of the described behavior. This way is easier to work with, better
suited for big complex designs, more maintainable and more portable between
di�erent devices. Here in KSI Labs, LLC we use one of HDL languages, VHDL
for CPLD design. The entire VHDL source for CENTIPEDE-PCI board CPLD
is available for free from our web site so everybody can customize our board as
he sees �t and/or change/extend its functionality.

So strictly speaking �FIRMWARE� is not a right word to call the CPLD
con�guration but we will be using it for the lack of better one.

This chapter does NOT describe how to con�gure the CENTIPEDE set of
boards for use with particular software (e.g. Mach 3;) it is the description what
the board looks like from a programmer's standpoint so he can write his own
software for it. Please note that ��rmware� may change at every moment so
please visit our web site, http://www.ksilabs.com for the latest information.

The included information describes Mach3-specic �rmware version 2.0.0 that
is programmed in CENTIPEDE-PCI boards as they shipped. There is also a
Generic GPIO �rmware available for this board from our web site that does not
have any particular use as of time of writing but can be used for any task by
writing an appropriate software for it. There is no particular purpose of writing
that �rmware but it is released in full binary and source form as a service for
the public. It can be used for any type of control applications and much more.

2.1 PCI Device Registers

CENTIPEDE-PCI is a regular PCI board fully conforming to PCI 2.2 standard.
It has one 4Kbyte PCI Memory BAR that is initialized for proper system mem-
ory mapping by PC BIOS. VendorID is 0xFEFF (That might be changed
to KSI Labs, LLC VendorID when it is obtained.) DeviceID is 0x0002,
ClassCode 0x078000. All register o�sets are from BAR0 base. Registers are

9

32-bit andMUST be accessed with 32-bit instructions. Write operations other
that 32-bit will have unpredictable results and probably will lead to faulty op-
eration and computer crash.

Here is the register map:

Register O�set Description

DATA_OUT 0x00 Output Data Register, R/W
DATA_IN 0x04 Input Data Register, R/O

DAC 0x08 DAC Data Register, W/O
ADC 0x0c ADC Data Register, R/W

IRQ_RAW 0x10 Raw IRQ Status Register, R/C
IRQ_MASK 0x14 IRQ Mask Register, R/W
IRQ_STAT 0x18 Masked IRQ Status Register, R/O

MACH_IDX_X 0x1c Mach3 Axis X Index, R/W
MACH_IDX_Y 0x20 Mach3 Axis Y Index, R/W
MACH_IDX_Z 0x24 Mach3 Axis Z Index, R/W
MACH_IDX_A 0x28 Mach3 Axis A Index, R/W
MACH_IDX_B 0x2c Mach3 Axis B Index, R/W
MACH_IDX_C 0x30 Mach3 Axis C Index, R/W
MACH_CONFIG 0x34 Mach3 Con�guration Register, R/W
MACH_CONFIG2 0x38 Mach3 Second Con�guration Register, R/W

MACH_CTL 0x3c Mach3 Control Register, R/W
MACH_STAT 0x40 Mach3 Status Register, R/C
MACH_FIFO 0x44 Mach3 FIFO Register, W/O
MACH_ENC 0x48 Mach3 Encoders Count Register, R/C

MACH_SPCNT 0x4c Mach3 Spindle Count, R/O
MACH_SPCTL 0x50 Mach3 Spindle Control, R/W

Table 2.1: CENTIPEDE-PCI/Mach3 Register Map

10

2.2 Registers Description

2.2.1 DATA_OUT, O�set 0x00

D31 D30 D29 D28

D27 D26 D25 D24

D23 D22 D21 D20

D19 D18 D17 D16

D15 D14 D13/SPSTEP D12/SPDIR

D11/CSTEP D10/CDIR D9/BSTEP D8/BDIR

D7/ASTEP D6/ADIR D5/ZSTEP D4/ZDIR

D3/YSTEP D2/YDIR D1/XSTEP D0/XDIR

Table 2.2: DATA_OUT Register

D0..31 Output Data, R/W. All data written to this register is immediately
re�ected on External Connector OUT0..31 pins. '1' will make the output
FET to open i.e. the output will go LOW . In other words writing '1' to a
particular bit will turn the corresponding external optocoupler LED ON.
Read operation will give the current actual output register state. D0..D11
outputs are physically disconnected from output pins when corresponding
Axis (XYZABC) is enabled in MACH_CONFIG register. In this case you
can still read/write the corresponding bits but the actual output pins are
controlled by FIFO outputs so such R/W operations will not have any
e�ect on the actual physical outputs. Defaults to all '0' on powerup.

xDIR Direction outputs for x Axis (XYZABC) when that Axis is enabled in
MACH_CONFIG register. In this case the corresponding DATA_OUT
register outputs are not connected to anything. You can write to those
bits and you will read back what you wrote but they are physically dis-
connected from the output pins.

xSTEP Step outputs for x Axis (XYZABC) when that Axis is enabled in
MACH_CONFIG register. In this case the corresponding DATA_OUT
register outputs are not connected to anything. You can write to those
bits and you will read back what you wrote but they are physically dis-
connected from the output pins.

SPDIR/SPSTEP Direction and Step outputs for Spindle drive when Dir/Step
Spindle is enabled in MACH_CONFIG2 register. In this case the corre-
sponding DATA_OUT register outputs are not connected to anything.
You can write to those bits and you will read back what you wrote but
they are physically disconnected from the output pins.

11

2.2.2 DATA_IN, O�set 0x04

D31/ENC4_B D30*/ENC4_A D29/ENC3_B D28*/ENC3_A

D27/ENC2_B D26*/ENC2_A D25/ENC1_B D24*/ENC1_A

D23*/SP_IDX D22/SP_TIMING D21* D20

D19*/ESTOP_SW D18/PROBE_SW D17*/CHome D16/CMinus

D15/CPlus D14/BHome D13/BMinus D12/BPlus

D11/AHome D10/AMinus D9/APlus D8/ZHome

D7/ZMinus D6/ZPlus D5/YHome D4/YMinus

D3/YPlus D2/XHome D1/XMinus D0/XPlus

Table 2.3: DATA_IN Register

D0..D31 Input Data, R/O. IN0..31 External Connector data state directly
from connector pin latched on every PCI clock (through an optocoupler.)
The same rule as for DATA_OUT register applies�'1' means there is cur-
rent through the input optocoupler LED (switch connected to the corre-
sponding BRK board terminal is CLOSED,) '0' means optocoupler LED
is OFF. Bits marked with '*' have fast optocouplers on inputs on rev.1.0
CENTIPEDE-PCI board. Starting from rev.1.1 fast optocouplers are on
bits 24..31. Input changes are re�ected immediately. Raw state for all
optional signals (xHome etc.) can be read from corresponding Dxx bits if
needed. Raw means it is ELECTRICAL, not LOGICAL state i.e. it only
tells if there is current through an optocoupler or not. That can be inter-
preted by the user software (Driver) and hardware as either activated or
not depending on �Negated� setting in appropriate con�guration registers
or in software con�guration.

xPlus/xMinus Plus and minus side Limit Switch inputs for x Axis (XYZ-
ABC) when the corresponding Axis is enabled in MACH_CONFIG reg-
ister. Those perform a speci�c Hardware action when the corresponding
axis is enabled. They stop all motion and activate EStop hardware state.
IRQ is also generated when one of these is activated (if enabled.)

xHome Home Switch inputs for x Axis (XYZABC) when the corresponding
Axis is enabled in MACH_CONFIG register. MACH_IDX register for
corresponding axis is frozen when this signal is activated so exact hit posi-
tion can be read. Actual Index Counters are NOT a�ected so the current
position information is not lost. MACH_IDX registers are transparent
latches that mirror Index Counters all the time but latch the last read-
ing when Probe or Home Switch is hit thus giving the exact hit position.
Once read they resume their normal operation if the corresponding switch
is not active or not enabled any more. Home Switch freezes only the cor-
responding axis Index while Probe Switch freezes ALL Indexes. IRQ is

12

generated when one of these switches is activated so the Driver software
can take appropriate action immediately.

PROBE_SW Digital Probe Switch input for probing. Its state can be read
from a corresponding bit but it also performs some hardware actions when
activated. ALL MACH_IDX registers are frozen when this signal is acti-
vated so exact hit position can be read. Actual Index Counters are NOT
a�ected so the current position information is not lost. MACH_IDX reg-
isters are transparent latches that mirror Index Counters all the time but
latch the last reading when Probe or Home Switch is hit thus giving the
exact hit position. Once read they resume their normal operation if the
corresponding switch is not active or not enabled any more. Home Switch
freezes only the corresponding axis Index while Probe Switch freezes ALL
Indexes. IRQ is generated when this switch is activated so the Driver
software can take appropriate action immediately.

ESTOP_SW Emergency Stop Switch input. That can NOT be disabled
or recon�gured to other polarity (not �Negated�) and it MUST be a
normally closed switch. If it is OPEN i.e. there is no current through its
optocoupler hardware will be in EStop hardware mode and there is NO
way to get it out of this state until this switch is closed. In other words this
switch is ABSOLUTELY required and itMUST be a �Push-To-Break�
type.

SP_TIMING Multiple pulse per revolution Spindle rotation sensor input.
This is used for reporting Spindle RPM and for Z Axis motion control
when lathe threading or rigid tapping. On every transition on this in-
put (rising or faling depending on con�guration bit in MACH_CONFIG2
register) the internal counter contents is transferred to MACH_SPCNT
register, counter is reset, and then incremented on each and every PCI
clock pulse. IRQ is generated on SP_TIMING transition so software can
read MACH_SPCNT register and act appropriately by calculating actual
Spindle RPM and displaying it or adjusting Z Axis speed thus gearing it
to the Spindle. There is also a debouncing counter that is loaded with a
value set in MACH_CONFIG2 register and started decrementing every
15 μS on a transition at this input. Input state is ignored until this counter
counted down to zero. This cycle repeats on all consecutive transitions,
both low-to-high and high-to-low.

SP_INDEX Single pulse per revolution Spindle Index sensor. This is used
in lathe threading to start Z Axis motion at exactly the same spot on
each consecutive threading pass. This is done in hardware by holding
step output until SP_INDEX pulse detected. To do this software should
write '1' in MACH_CTL register WAIT4PULSE bit. This will put all
step output (except Spindle) on hold and will restart it when SP_INDEX
is detected. FIFO will be still taking step data while this hold is in ef-
fect until it is full. Then, when Index pulse comes the very �rst FIFO

13

entry will be output immediately. This input also performs all the func-
tions of SP_TIMING if that is not enabled. There is a separate de-
bouncing counter for SP_INDEX working in exactly the same fashion as
SP_TIMING. IRQ is also generated on each SP_INDEX pulse.

2.2.3 DAC, O�set 0x08

X X X X X X X X

X X X X X X X X

D15 D14 D13 D12 D11 D10 D9 D8

D7 D6 D5 D4 D3 D2 D1 D0

Table 2.4: DAC Register

D0..15 SPI Transmit Holding Register (THR.) Once written data is transferred
bit-by-bit to TLV5617A 2-channel 0-10V output DAC on the BRK board.
Each write to DAC register clears corresponding bit in IRQ_RAW register
and that bit goes back to '1' once that written data is transferred to
the DAC. This register is Write-Only. Please read TLV5617A datasheet
and Mach3 Driver source to learn how to use this register. Please note
that despite only 16 bits are used all writes MUST be done as 32-bit
instructions.

X Don't care.

2.2.4 ADC, O�set 0x0c

X X X X X X X X

X X X X X X X X

X X X X X X D9 D8

D7 D6 D5 D4 D3 D2 D1 D0

Table 2.5: ADC Register

D0..9 SPI Transmit Holding Register (THR) on write, Receive Holding Regis-
ter (RHR) on read. This is a second SPI controller, separate from DAC
SPI. Once written data is transferred bit-by-bit to TLV1544 4-channel
0-10V input ADC on the BRK board. At the same time ADC data is
received into RHR. Each write to ADC register clears corresponding bit
in IRQ_RAW register and that bit goes back to '1' once that written data
is transferred to the ADC (and ADC data is received into RHR.) Reading
ADC register (RHR) does not have any e�ect on SPI controller and IRQ
state, only write starts a new SPI cycle. Please read TLV1544 datasheet

14

and Mach3 Driver source to �nd out how to use this register. Please note
that despite only 10 bits are used all reads and writes MUST be done as
32-bit instructions.

X Don't care on write, '0' on read.

2.2.5 IRQ_RAW, O�set 0x10

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 MACH_SP_TIM MACH_SP_IDX MACH_HomeC

MACH_HomeB MACH_HomeA MACH_HomeZ MACH_HomeY

MACH_HomeX MACH_PROBE MACH_FOVF MACH_FAULT

MACH_DONE MACH_TMR ADC DAC

Table 2.6: IRQ_RAW Register

DAC DAC SPI Controller is Idle and ready to take new data to be sent to
TLV5617A DAC on the BRK board. This bit is always set when DAC
SPI Controller is Idle. Write data to its THR and write '1' to this bit to
reset it. It will get set again when transfer is complete.

ADC ADC SPI Controller is Idle and ready to take new data to be sent to
TLV1544 ADC on the BRK board. This bit is always set when ADC SPI
Controller is Idle. Write data to its THR and write '1' to this bit to reset
it. It will get set again when transfer is complete.

MACH_TMR Mach3 timer interrupt. Periodic interrupt every 5th cycle
when the board in is RUN condition. Cycle period is determined by
CYCLE setting in MACH_CTL register. Write '1' to this bit to clear.

MACH_DONE All data in FIFO were sent out and last cycle has ended so
board got idle. Write '1' to this bit to clear.

MACH_FAULT Fault interrupt. Raised when any of Limit Switches hit, or
Emergency Stop (EStop from now on) button is activated. Cleared by
writing '1' in this bit if the condition that caused it is cleared. Will not
reset if condition is still present. FIFO is purged on this event, periodic
timer stays ticking.

MACH_FOVF FIFO over�ow. Theoretically should not happen because
hardware ignores all FIFO writes when it is full but anyways... Write
'1' to clear.

15

MACH_PROBE Probe Switch hit. Write '1' to clear. Will not reset if the
switch is still activated. All axes indexes are frozen on this event until
they are read, PROBE_HIT bit in MACH_STAT register is written with
'1,' and this IRQ is acknowledged by writing '1' to its bit. The freeze is
done by stopping transparent latches between actual index counters and
IDX registers so they keep the last data while index counters continue
counting so the running position is not lost.

MACH_HOMEx Home Switch for x Axis (XYZABC) is hit. Write '1' to
clear. Will not reset if the switch is still activated. The corresponding axis
index is frozen on this event until it is read, corresponding HOME_HIT bit
in MACH_STAT register is written with '1,' and this IRQ is acknowledged
by writing '1' to its bit. The freeze is done by stopping transparent latches
between actual index counters and IDX registers so they keep the last data
while index counters continue counting so the running position is not lost.

MACH_SP_IDX Spindle Index Pulse detected. This is single pulse per
revolution Index sensor that is used for starting lathe threading pass. It
doubles at Spindle Timing if no Timing sensor installed. Write '1' to this
bit to clear.

MACH_SP_TIM Spindle Timing Pulse detected. This is multiple pulse
per revolution Timing sensor that is used for measuring Spindle RPM for
Mach DRO and gearing Z Axis to the Spindle while threading or rigid
tapping. See DATA_IN register for Spindle Index and Timing operation
description. Write '1' to clear.

2.2.6 IRQ_MASK, O�set 0x14

X X X X

X X X X

X X X X

X X X X

X MACH_SP_TIM MACH_SP_IDX MACH_HomeC

MACH_HomeB MACH_HomeA MACH_HomeZ MACH_HomeY

MACH_HomeX MACH_PROBE MACH_FOVF MACH_FAULT

MACH_DONE MACH_TMR ADC DAC

Table 2.7: IRQ_MASK Register

X Don't care. Those bits can be written to and read back but they don't have
any e�ect for now. They might be used in the future when additional
functionality is implemented and add-on boards are out.

16

Rest Remaining bits are used to mask corresponding IRQ_RAW interrupt bits.
Default to all '0' on powerup so no IRQs to PCI bus is generated.

2.2.7 IRQ_STAT, O�set 0x18

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 MACH_SP_TIM MACH_SP_IDX MACH_HomeC

MACH_HomeB MACH_HomeA MACH_HomeZ MACH_HomeY

MACH_HomeX MACH_PROBE MACH_FOVF MACH_FAULT

MACH_DONE MACH_TMR ADC DAC

Table 2.8: IRQ_STAT Register

0 Unused, read as '0.'

Rest Remaining bits are a result of bitwise AND on IRQ_RAW and IRQ_MASK
registers. PCI IRQ signal is an OR on all bits of this register. That means
that it is only raised when the corresponding bit is set in both IRQ_RAW
and IRQ_MASK. All bits are read-only. To reset (acknowledge) a partic-
ular IRQ '1' should be written to a bit in IRQ_RAW register.

2.2.8 MACH_IDX_[XYZABC], O�sets 0x1c, 0x20, 0x24,
0x28, 0x2c, 0x30

D31 D30 D29 D28 D27 D26 D25 D24

D23 D22 D21 D20 D19 D18 D17 D16

D15 D14 D13 D12 D11 D10 D9 D8

D7 D6 D5 D4 D3 D2 D1 D0

Table 2.9: MACH_IDX_[XYZABC] Registers

D0..31 Current Axis position, R/W. Incremented/Decremented on each and
every step output to the Axis depending on step direction. Signed (2-
complement) 32-bit INT. Actual counters are connected to these registers
through transparent latches. Those latches are open most of the time
so registers show the current positions. They are frozen when Home or
Probe Switch event occurs so the exact hit position can be read. To
unfreeze them the Switch Hit event should be cleared. This is done by

17

writing '1' to a corresponding bit in MACH_STAT register. To prevent
this condition from reoccuring if a switch is still activated one can �rst
disable that switch in MACH_CONFIG register and then write '1' to
MACH_STAT bit.

2.2.9 MACH_CONFIG, O�set 0x34

PROBE_EN PROBE_NO C_HOME_EN C_HOME_NO

C_LIMS_NO C_DIR_REV C_EN B_HOME_EN

B_HOME_NO B_LIMS_NO B_DIR_REV B_EN

A_HOME_EN A_HOME_NO A_LIMS_NO A_DIR_REV

A_EN Z_HOME_EN Z_HOME_NO Z_LIMS_NO

Z_DIR_REV Z_EN Y_HOME_EN Y_HOME_NO

Y_LIMS_NO Y_DIR_REV Y_EN X_HOME_EN

X_HOME_NO X_LIMS_NO X_DIR_REV X_EN

Table 2.10: MACH_CONFIG Register

x_EN Axis x (XYZABC) enable. Enables corresponding axis hardware. Axis
x(Plus,Minus,Home) signals are connected to the corresponding DATA_IN
bits, x(DIR/STEP) outputs switched from DATA_OUT bits to corre-
sponding FIFO outputs, Limit Switches logic is enabled so MACH_FAULT
IRQ will be generated.

x_DIR_REV Axis x (XYZABC) Direction Signal will be inverted. In Mach3
'0' means �move to PLUS side.� That is what is stu�ed in FIFO for each
and every Axis. Actual drives might treat direction signals di�erently.
To accomodate all of them DIR output is inverted if these bits are set to
'1.' It is only the actual physical output line that is inverted, all internal
signals are still the same and MACH_IDX registers are Incremented on
every step when corresponding DIR bit is '0.'

x_LIMS_NO Axis x (XYZABC) Limit Switch is Normally Open (NO.) Usu-
ally it is recommended that Limit/Home/Probe/EStop switches BREAK
the connection when activated, i.e. they are Normally Closed (NC) until
activated. That ensures the machine will be saved from damage even if
the switch cable is cut or otherwise disconnected. If the switch is NO its
activation will not be detected if it is disconnected and the machine can
be damaged. If it is necessary to use NC switches this bit should be set
to invert the default logic. It can also be used to make the switch signal
always inactive if there is no particular switch on the machine instead
of shorting that pin (all axes signals are �xed in hardware and there is
no way to disable a Limit Switch or use its pin for something else if an

18

Axis is enabled.) There is only ONE LIMS_NO bit per axis so BOTH of
switches must be either NO or NC, mix is not allowed.

x_HOME_NO Axis x (XYZABC) Home Switch is Normally Open. Every-
thing from x_LIMS_NO applies here.

x_HOME_EN Axis x (XYZABC) Home Switch Enable. To avoid unneces-
sary interrupts and to provide for resetting HOME_HIT conditions Home
Switches are only enabled brie�y during Homing cycles. These are per-axis
Enable bits.

PROBE_NO Probe Switch is Normally Open. Everything written about
NO/NC switches above applies.

PROBE_EN Probe Switch Enable. It is only enabled when probing, disabled
all other time to provide for PROBE_HIT condition reset and eliminame
unnecessary interrupts.

2.2.10 MACH_CONFIG2, O�set 0x38

SP_TIM_INV SP_TIM_EN TIM_DB[8..7]

TIM_DB[6..3]

TIM_DB[2..0] IDX_DB[9]

IDX_DB[8..5]

IDX_DB[4..1]

IDX_DB[0] SP_DIR_INV SP_STEP_INV SP_DIRSTEP

SP_IDX_INV SP_IDX_EN C_STEP_INV B_STEP_INV

A_STEP_INV Z_STEP_INV Y_STEP_INV X_STEP_INV

Table 2.11: MACH_CONFIG2 Register

x_STEP_INV Axis x Step signal Inverted. Usually Step Signal is output
as a pulse that turns the drive Step input optocoupler ON. Some drives
may require inverted signal. These bits invert STEP outputs when set,
per axis.

SP_IDX_EN Spindle Index signal Enable.

SP_IDX_INV Spindle Index signal is Inverted i.e. turns CENTIPEDE op-
tocoupler OFF to indicate Index pulse.

SP_DIRSTEP Enables Dir/Step Spindle when set.

SP_STEP_INV Spindle Step signal Inverted i.e. drive Step input optocou-
pler ON to OFF transition is used to make a step.

19

SP_DIR_INV Spindle Dir signal Inverted. Set this if your Spindle rotates
in the wrong direction.

IDX_DB[0..9] Spindle Index signal debounce time in 15 μS units. Index
signal state is ignored for this number of 15 μS intervals after initial tran-
sition. Write '0' to disable debouncing.

TIM_DB[0..8] Spindle Timing signal debounce time in 15 μS units. Index
signal state is ignored for this number of 15 μS intervals after initial tran-
sition. Write '0' to disable debouncing.

SP_TIM_EN Spindle Timing signal Enable.

SP_TIM_INV Spindle Timing signal is Inverted i.e. turns CENTIPEDE
optocoupler OFF to indicate Timing pulse.

2.2.11 MACH_CTL, O�set 0x3c

WAIT4PULSE FIFO_PURGE X X

X X X X

X X X X

X X X X

MACH_CYCLE[10..7]

MACH_CYCLE[6..3]

MACH_CYCLE[2..0] RESET

RUN NO_LIMITS ESTOP_REQ SIMULATE

Table 2.12: MACH_CTL Register

SIMULATE When set to '1' motor control outputs are kept at '0' state, no
Steps output. Everything else works as usual so this is the most precise
Dry Run simulation possible.

ESTOP_REQ Programmatic Emergency Stop (EStop.) Stops the CEN-
TIPEDE FSM, purges FIFO. Board goes in EStop state; only periodic
timer IRQs are generated.

NO_LIMITS Makes the board to ignore any of Limit Switches. Normally,
when this bit is not set CENTIPEDE immediately goes into EStop state,
FIFO purged, FSM stopped, FAULT IRQ generated, only periodic timer
is ticking. Board will NOT go out of EStop until the condition is removed
i.e. machine is moved out of Limit Switches. Setting this bit overrides
this behaviour thus allowing to jog o� the switch.

RUN Setting this bits allows the Finite State Machine (FSM) to run so the
actual Mach3 work can be done.

20

RESET Setting this bit generates board RESET signal � most registers are
set to all zero, FSM stopped, FIFO purged, periodic timer is also stopped
so no IRQs. This is self-clearing bit because reset sets all the registers
to their initial state (almost always all zeroes) thus resetting this very bit
among others.

MACH_CYCLE[0..10] Mach3 Cycle Period, 11 bit. This �eld determines
kernel frequency or Engine frequency as it is called in Mach3. Every Mach3
cycle will be this number of PCI clocks long. PCI Clock is roughly 30 nS
that corresponds to standard 33.333 MHz PCI Frequency (the exact value
is measured by the Mach Driver.) For 100 KHz, e.g. the value is 333 (33.3
MHz / 333 = 100 KHz.)

FIFO_PURGE Writing '1' to this bit will purge the FIFO � FIFO pointer
(internal) will be set to the �rst element, i.e. FIFO will become empty.
This bit is not sticky i.e. action is only taken once on the write operation
and its value is not saved. That means there is no need to write '0' there
after writing '1.'

WAIT4PULSE Writing '1' to this bit will make CENTIPEDE put all step
data on hold until Spindle Index Pulse. This is used for lathe threading
to start each consecutive thread pass at exactly the same spot. This bit
is not sticky i.e. action is only taken once on the write operation and its
value is not saved. That means there is no need to write '0' there after
writing '1.'

X Don't care.

Please note that there is no Step Pulse settings any more. It did not make sence
to have them at all because ALL stepper/servo drives we are aware of only state
MINIMUM pulse width. They all make step on Step input TRANSITION,
either low-to-high or high-to-low. That is why CENTIPEDE step generation
has changed.

Now we generate step pulses as transitions from inactive to active state
exactly in the middle of each Mach Cycle period and resetting it back to inac-
tive at the very end of that cycle. The exact meaning of �active� depends on
x_STEP_INV bits in MACH_CONFIG2 register. All Step signals are exactly
one Mach Cycle wide with actual Step transition happening at the middle of it.
In Mach terms (Motor Tuning dialog) that means that both Dir and Step Pulse
are ALWAYS half of Mach Cycle period i.e. half of Kernel Frequency period.
For 100KHz Kernel Frequency they are both 5 μS. Mach3 settings are ignored
by the driver.

That allowed to simplify our hardware implementation a little bit thus free-
ing CPLD resources for other purposes and gave us some additional bene�ts.
One of those is that step is ALWAYS taken at the middle of Mach Cycle that
reduces step jitter when lathe threading or rigid tapping.

21

2.2.12 MACH_STAT, O�set 0x40

RUNNING ESTOP BUSY SP_STOPPED

X X FIFO_FULL FIFO_EMPTY

FIFO_ROOM[4..1]

FIFO_ROOM[0] ProbeHit CHomeHit CMinusHit

CPlusHit BHomeHit BMinusHit BPlusHit

AHomeHit AMinusHit APlusHit ZHomeHit

ZMinusHit ZPlusHit YHomeHit YMinusHit

YPlusHit XHomeHit XMinusHit XPlusHit

Table 2.13: MACH_STAT Register

xPlusHit Axis x (XYZABC) Plus side Limit Switch hit. This is NOT a switch
state but the indicator it's been hit. This event generates FAULT inter-
rupt and forces board into EStop. Writing '1' to these bits will clear the
condition if the Limit Switch is no longer activated. If the switch is still
active it will have no e�ect unless NO_LIMITS bit is set in MACH_CTL
register.

xMinusHit Same as above for Minus side Limit switch.

xHomeHit Axis x (XYZABC) Home Switch hit. Freezes the IDX register for
the a�ected axis, stays set until cleared with writing '1' to a particular
bit. Such a write will have no e�ect if condition still exists. Recom-
mended action is read the frozen value (hit point,) disable the switch
in MACH_CONFIG, reset with writing '1.' Usually Home Switches are
only enabled brie�y on Homing forward pass and disabled right after the
switch is hit. Resetting a particular bit unfreezes the corresponding axis
IDX register so it starts giving the actual position.

FIFO_ROOM[0..4] Current free space left in FIFO. Used by the driver to
make a decision on how many steps it can push in FIFO.

FIFO_EMPTY Set when FIFO is empty. Indicator bit, R/O. Resets auto-
matically if there is at least one entry in FIFO and its cycle is not �nished.

FIFO_FULL No more room in FIFO. R/O, self-resets when the �rst entry is
popped.

SP_STOPPED Spindle stopped. Either Dir/Step Spindle is stopped (if en-
abled) or no Spindle Index/Timing pulses detected for more than 8 sec-
onds.

BUSY CENTIPEDE is busy i.e. FIFO is not empty and there are still cycles
to do. R/O, self-clearing.

22

ESTOP Board is in EStop state � Limit Switch hit, EStop button activated,
connection to BRK board lost, or ESTOP_REQ bit set in MACH_CTL
register. Writing '1' to this bit will clear EStop if the condition that forced
CENTIPEDE in that state is no longer active. Write will have no e�ect
if condition persists. Will not go away by itself when condition removed;
writing '1' to reset is required.

RUNNING Indicator bit, R/O meaning the board is up and running. Run-
ning means board was con�gured properly and RUN bit set in MACH_CTL.
EStop does NOT a�ect this bit � board can be running but in EStop con-
dition. '0' in this bit means FSM is stopped and board is not active, even
the periodic timer is stopped.

X Don't care.

2.2.13 MACH_FIFO, O�set 0x44

X X X X X X X X

X X X X X X X X

X X X X CStep CDir BStep BDir

AStep ADir ZStep ZDir YStep YDir XStep XDir

Table 2.14: MACH_FIFO Register

xDir Axis x (XYZABC) Direction for current step. '0' means move to the Plus
direction. FIFO is 20 entries deep. That number is chosen because Mach3
outputs Planned Motion points in sets of 5 so FIFO is made a multiple
of 5. The �rst entry written to FIFO will be automatically output to the
motors by CENTIPEDE hardware on the next cycle. Then it will remove
it automatically and pop the next one from FIFO until no more entries
left. It pops one entry each CENTIPEDE cycle. Periodic timer interrupt
is generated every 5th cycle so the driver ISR can load another set of 5
steps to FIFO.

xStep Axis x (XYZABC) Step signal. Step pulse will be generated if it is '1'.
Everything from xDir also applies here. As usual only 32-bit writes should
be used. This is a W/O register, reads are not guaranteed to return any
particular value.

23

2.2.14 MACH_ENC, O�set 0x48

ENC4_CNTR[7..0]

ENC3_CNTR[7..0]

ENC2_CNTR[7..0]

ENC1_CNTR[7..0]

Table 2.15: MACH_ENC Register

ENCx_CNTR[7..0] 8-bit counter for Encoder x (1..4.) Signed (2-complement)
CHAR. Increments/Decrements on Quadrature Encoder rotation depend-
ing on direction. Registers are R/O and they are reset to zero after each
read. That is done to save on CPLD resources � the main 32-bit counter
is in the software driver and these 8-bit counters are used as �Change from
last read.� Every periodic timer tick driver reads all these counters and
adds them to the main 32-bit counters. Decoder logic for quadrature en-
coders is all-hardware, x4 multiplying i.e. every transition is detected so
the actual resolution is 4 times of encoder stated one. That means that
e.g. 2500 CPR encoder will give 10000 steps per revolution.

2.2.15 MACH_SPCNT, O�set 0x4c

X X X X SP_CNT[27..24]

SP_CNT[23..16]

SP_CNT[15..8]

SP_CNT[7..0]

Table 2.16: MACH_SPCNT Register

SP_CNT[0..27] Spindle Count. Number of PCI Clock pulses between last 2
Spindle Timing (or Spindle Index if Timing is not enabled) pulses. Read-
Only.

X Don't care.

24

2.2.16 MACH_SPCTL, O�set 0x50

X X X X FAKE_PULSE SP_RUN SP_DIR SP_DIV[24]

SP_DIV[23..16]

SP_DIV[15..8]

SP_DIV[7..0]

Table 2.17: MACH_SPCTL Register

SP_DIV[0..24] Dir/Step Pulse Frequency Divisor. Steps are generated by di-
viding PCI clock. This is a value that determines resulting step frequency
e.g. Dir/Step Spindle RPM. Every time internal counter decrements to
zero Step output is inverted and counter is reloaded with SP_DIV value
(this is all done by the hardware; SP_DIV is stored in a register when
written so it only needs to be written once for particular RPM.) For a full
step pulse 2 such transitions needed so this value must be calculated to get
a frequency twice the desired RPM multiplied by steps per rotation. E.g.
if we want to get 300 RPM from a motor with 1000 steps per revolution
we should feed it with 300(RPM) / 60(sec/min) * 1000(steps/rev) = 5
KHz pulse rate. We need 2 transitions per step so we should program our
divisor for 5 KHz * 2 = 10 KHz frequency. PCI clock is usually 33.333MHz
so to get 10 KHz we should use 33.333(MHz) / 10(KHz) = 3333 divisor
value.

SP_DIR Dir signal for Dir/Step Spindle.

SP_RUN Go signal. Set this to '1' to actually start the Spindle, set to '0' to
stop it.

FAKE_PULSE This bit imitates Spindle Timing pulse. It is only used on
Driver startup to measure actual PCI clock frequency. This is Write-Only
bit.

X Don't care. No e�ect on write, read back as '0.'

Please note that there is no Step Pulse settings. It did not make sence to have
them at all because ALL stepper/servo drives we are aware of only state MIN-

IMUM pulse width. They all make step on Step input TRANSITION, either
low-to-high or high-to-low. Our Step Pulses are actually a constant 50% Duty
Cycle square wave. This is generated in hardware without any need for sot-
ware intervention once SP_DIV is programmed and SP_RUN is set. Software
only has to intervene when Spindle RPM or some other state (e.g. Direction or
Run/Stop) needs to be changed.

25

Chapter 3

Appendix A - Hardware

di�erences between rev.1.0

and rev.1.1

There are some di�erences between rev.1.0 and rev.1.1 CENTIPEDE-PCI boards.
They are not all that signi�cant but there some caveats.

� First of all, there were 4 unpopulated footprints for optional oscillator on
rev.1.0 board (elements R4, C15, U2, and R5) close to the boards center.
Those were removed completely from rev.1.1 PCB. There is absolutely no
impact because those elements were never used.

� Rev.1.0 board has 4 out of 8 fast optocouplers on di�erent input lines
(see section 2.2.2.) It is not very likely somebody would use that feature
but if he would one should take care to assign data lines properly with
application software (e.g. con�guration editor or whatever it's called) for
his particular board revision.

� As a result of the above CPLD project �le di�ers between those 2 revi-
sions. VHDL code is absolutely identical between the two but there are
some changes in pin assignments in centipede_pci.qsf �le and resulting
centipede_pci.pof �le is di�erent. Changes are minimal but please be
careful anyway. All future CPLD �rmware will be released in versions
for both rev.1.0 and rev.1.1 PCI boards. There is no di�erences between
those revisions from software point of view.

� IMPORTANT! Rev.1.0. PCI board had PCI bus GROUND con-
nected to pins 69 and 78 of the External Connector, NOT +5V power. It
had 2 +5V power pins (51 and 60) and 2 GROUND pins (69 and 78.) On
rev.1.0 CENTIPEDE-BRK board pins 69 and 78 of the mating connec-
tors are NOT CONNECTED to anything so it works OK with rev.1.0

26

CENTIPEDE-PCI board. Rev.1.1 PCI board will also work just �ne with
rev.1.1 BRK board though 2 +5V conductors in the cable will not be
used. But rev.1.0 PCI board can NOT be used with rev.1.1 BRK
board because the latter has pins 51, 60, 69, and 78 all con-
nected together that will make a short circuit between PC +5V
and ground.

� Other than that those boards absolutely identical and fully compatible
with each other.

27

